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a b s t r a c t

Whether considering the cumulative impact of chronic, small-size oil discharges or accidents associated
with marine traffic and offshore oil and gas development, seabirds face a variety of threats in the marine
environment. Assessing the vulnerabilities of seabirds to maritime hazards requires an understanding of
their species distribution, and a means for combining this information across groups. Using at-sea survey
data gathered as part of a regional monitoring program, an efficient framework for integrating multi-
species data was developed. Survey data was incorporated within a distance sampling framework to
generate bias-corrected seabird densities for an area of over 730,000 km2 size, which were used to
construct multiple species distribution models (SDMs). The structural difficulties associated with sam-
pling sparsely distributed individuals that also occur in large, localized concentrations led to the use of
three modelling techniques potentially well suited for this type of data: negative binomial, ‘‘hurdle’’,
and random forest methods. Predicted abundances were combined to produce an ensemble forecast,
which met or exceeded the accuracy of predictions from the individual models. Multi-species potential
sensitivity maps were developed to identify core areas, confirming the general importance of physio-
graphic features such as the shelf break and bathymetry. Distribution was also seasonally influenced,
with spring and winter standing out as periods of peak importance. When combined with an oil pollution
layer derived from aerial surveillance, vulnerability was highest in the vicinity of major ports (e.g., Halifax
and Sydney, Nova Scotia). However, the vulnerability map also indicated lower but widespread levels of
oiling risk throughout the shelf, presumably associated with persistently high levels of shipping traffic
and ongoing petroleum extraction and exploration. Outside of this region, migratory connectivity is
expected to expose seabirds to a wider network of hazards and further underscores the need for the
coordinated and routine collection of marine hazard data alongside at-sea distributional data.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Successful conservation planning hinges on an ability to
identify hazards, as well as an awareness of species vulnerability.
In marine contexts, threats originate from a number of factors,
including: small-scale, chronic oil discharges associated with
maritime traffic (Wiese and Ryan, 2003); wide-scale accidental
releases of oil (Henkel et al., 2012); fisheries bycatch (Tasker
et al., 2000; Hamel et al., 2009); collisions with and loss of habitat
associated with offshore wind farms (Exo et al. 2003); and negative
interactions with offshore oil drilling platforms (Wiese et al.,

2001). As a result of their low fecundity, seabirds are vulnerable
to hazards that impact adult mortality rates (Votier et al., 2005).
Furthermore, heavier-bodied, diving species are particularly at risk
to oil pollution given the amount of time they spend interacting
with the sea-surface–air interface (Camphuysen, 1998). Mitigating
anthropogenic risks first requires information about organisms’
usage of the marine environment, in both time and space, so that
priority areas can be identified and effective management
strategies developed. Unfortunately, the very large area of ocean
habitat potentially utilized by seabirds makes it logistically
difficult to enumerate these species (Brown, 1980; McKinnon
et al., 2009). Pelagic surveys rely heavily on moving platforms
(e.g., research/fishery patrol vessels, ferries, sailboats) which may
or may not be primarily tasked with gathering seabird information.
Large gaps in knowledge inevitably occur, especially during the
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non-breeding season when, no longer constrained by central place
foraging within range of their colonies, species are free to roam
over much larger distances (Huettmann and Diamond, 2001; Oppel
et al., 2012).

In terrestrial contexts, there are many successful applications of
species distribution modelling (SDM, Guisan and Zimmermann,
2000; Franklin, 2009) to predict habitat usage in unsurveyed areas
(Austin, 2002; Shriner et al., 2002). SDMs work by combining
empirical patterns of occurrence with Geographic Information
System (GIS)-derived information about environmental conditions,
and are a valuable tool for conducting conservation planning
(Jones-Farrand et al., 2011). Applying this methodology in marine
contexts can be quite difficult, however, as marine environments
are highly dynamic (Haney, 1989). Processes such as front forma-
tion, important for nutrient entrapment and elevated biological
productivity (Schneider, 1990; Bakun, 1996), can shift position
over a period of hours (Durazo et al., 1998). Nevertheless, upwell-
ing events and nutrient entrapment also associate with persistent
physiographic features such as shelf breaks and sea banks (Smith
and Petrie, 1982; Hannah et al., 2001), making these useful indica-
tors of marine productivity at broader scales. It can be expected
that foraging seabirds will shift their at-sea distributions to benefit
from these associations, displaying sparse distributions over wide
areas, and larger, more localized concentrations in productive
foraging areas (Briggs et al., 1987; Hunt and Schneider, 1987;
Fauchald et al., 2002; Clarke et al., 2003). This produces data distri-
butions with both a large number of non-observations (the so-
called ‘zero-inflation’ problem) and occasionally large concentra-
tions of highly variable abundance (the so-called ‘overdispersion’
problem). Taken together, zero inflation and overdispersion pose
serious problems for SDMs based on traditional techniques (Hilbe,
2008).

Over the past 20 years, there has been a notable growth in the
number of algorithms used to model animal occurrence and abun-
dance (Hegel et al., 2010). Such methods range from presence-only
techniques (e.g., maximum entropy or MAXENT, Phillips et al.,
2006; ecological niche factor analysis or ENFA, Hirzel et al., 2002)
to presence-absence (logistic generalized linear or logistic general-
ized additive models), to abundance (Poisson or negative binomial
regression). Machine learning methods such as random forest
(Breiman, 2001) can be applied in any of these cases. However,
the very large number of available methods renders it difficult to
choose a technique (Jones-Farrand et al., 2011), so a decision is of-
ten based on investigator preference or familiarity (Araújo and
New, 2007; Jones-Farrand et al., 2011). Current research, however,
points to the advantages of combining the predictions of different
modelling methods, a process referred to as ensemble modelling
(Araújo and New, 2007; Oppel et al., 2012) or decision fusion
(Das et al., 2008). The implicit assumption is that while the true
underlying process is unknown, different forecasting models are
able to capture different components of the underlying signal
(Clemen, 1989). The advantages are expected to be maximized
when different, but complementary, modelling algorithms are em-
ployed (Clemen, 1989).

Marine SDMs are rare (Robinson et al., 2011), and SDMs based
on shipboard surveys are even rarer (Oppel et al., 2012). Due to al-
most four years of pelagic surveys conducted as part of the Eastern
Canada Seabirds at Sea monitoring program, this study was able to
extend the approach developed by Oppel et al. (2012) and examine
the at-sea distribution of a group of seabirds that occur on or near
the Scotian Shelf of Nova Scotia. Survey data was incorporated
within a distance sampling framework to generate bias-corrected
seabird densities for an area of over 730,000 km2 size. Three differ-
ent modelling approaches were selected for their theoretical suit-
ability to deal with zero-inflated, overdispersed data: negative
binomial (NB) generalized linear modelling, Hurdle modelling,

and random forest (RF) machine learning. Results from these meth-
ods were combined to produce an ensemble prediction, which was
used to produce a composite oil-pollution sensitivity map. The
sensitivity layer was then combined with information about
chronic, small-scale oil pollution to reveal patterns of oiling
vulnerability, illustrating that the results of disparate monitoring
programs, with different objectives, can be usefully combined to
assist regional conservation planning.

2. Methods

2.1. Study area

The focal area was the Scotian Shelf with a maximum depth of
about 200 m, extending 150–250 km offshore of the province of
Nova Scotia, Canada. Also included were portions of the Bay of Fun-
dy as well as the Cabot Strait (Fig. 1). At the shelf break sea depth
increases rapidly to abyssal levels exceeding 3000 m. The topogra-
phy of the shelf, combined with tidal forces (e.g., tidal mixing),
wind, and fluctuations of offshore currents associated with the Gulf
Stream, result in upwelling and partial gyres capable of retaining
nutrients and concentrating marine biomass (Smith and Petrie,
1982; Hannah et al., 2001; Nova Scotia Museum of Natural History,
2010). A number of banks occur throughout the shelf, some of
which (e.g., Browns Bank, Sable Island Bank, Georges Bank) experi-
ence tidally-produced gyres of sufficient strength to also retain
nutrients and concentrate prey (Hannah et al., 2001).

2.2. At-sea survey data

Three focal species were the subject of study: (1) Black-legged
Kittiwake (Rissa tridactyla); (2) Dovekie (Alle alle); and (3) Northern
Fulmar (Fulmarus glacialis). This group is not only a significant
presence on the Scotian shelf, but they also spend a significant por-
tion of their time interacting with the sea-surface–air interface,
which elevates their risk of oil exposure (Brown, 1980; Camphuy-
sen, 1998). Adopting the terminology of Zacharias and Gregr
(2005), these species can be described as sensitive to stresses
related to sea-surface oil pollution, primarily as a result of their
foraging modes: surface feeding in the case of Black-legged
Kittiwake and Northern Fulmar, and deep-water pursuit diving in
the case of Dovekie (Brown, 1980; Camphuysen, 1998).

Observations from 76 shipboard surveys were gathered from
March 1, 2006 to October 31, 2009 as part of the Eastern Canada
Seabirds at Sea (ECSAS) program (Fifield et al., 2009). The ECSAS
survey protocol (Gjerdrum et al., 2012) incorporates the recom-
mendations of Tasker et al. (1984), as well as modern distance
sampling techniques (Buckland et al., 2001). Observations were
conducted near the front of the vessel during 5-min periods called
watches, but only when vessel speed was between 4 knots (7.4 km/
h) and a maximum of 19 knots (35.2 km/h). For each watch, the
date, time, start and end positions, course, speed, weather, visibil-
ity, and sea and ice conditions were recorded. When visibility was
poor (due to rain or fog) the actual width of the visible transect
(e.g., 200 m) was recorded. Swimming birds were continuously re-
corded during 5-min watches, while flying birds were sampled
‘‘instantaneously’’ roughly every 300 m.

Swimming birds were identified on one side of the vessel, and
counted and assigned to one of four distance classes perpendicular
to the vessel track (0–50 m, 51–100 m, 101–200 m, 201–300 m). A
distance gauge was used when necessary. Due to ongoing develop-
ment of the survey methodology, distances to flying birds were
measured using one of three different methods: (1) with no dis-
tances measured and an assumed uniform detection function of
probability one (9% of surveys by length of track, from October to
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December, 2007); (2) perpendicularly to the vessel track, as with
swimming birds (56% of track lengths, between January and July,
2008); or (3) radially as point counts (35% of track lengths, after
July, 2008). As the detection process differed depending upon
method, density of flying and swimming birds were estimated
separately and summed to compute total density. As 10 � 10 grid
cells were used to summarize densities (see below), many cells com-
bined density estimates based on multiple methods for measuring
distance to flying birds. With those blocks, estimates were averaged,
weighted by survey effort (using kilometres surveyed).

2.3. Density estimation

Distance 6 Release 2 (Thomas et al., 2010) was used to estimate
seabird densities, stratified by season and 10 � 10 grid cell. The
choice of 10 � 10 grid was a trade-off between the desire for geo-
graphic detail and the need to maintain good estimator precision
and uniform coverage of the study area while avoiding the creation
of cells with too few observations. Additionally, this also ensured
adequate overlap with oil pollution data (Section 2.8). To our
knowledge, this is the first attempt to apply a distance sampling
framework over such a wide area, and necessitated the computa-
tion of 72 separate projects using program Distance 6 (3
species � 4 seasons � 3 survey types � 2 components). We feel
that the acquisition of seasonally-specific seabird density esti-
mates, simultaneously controlling for the detection bias induced
by differences in sea conditions, justified the effort. Starting with
basic key functions (half-normal), optional series expansion terms
were chosen from one of three families (cosine, hermite, or polyno-
mial). Visual inspection and the v2 goodness-of-fit test were used
to assess detection function model fit, and then an attempt was
made to improve fit by either choosing a different key function
(hazard rate or uniform with optional series expansion terms) or
by including explanatory covariates (such as wind speed, sea state,
wave height and/or observer) using the multi-covariate distance
sampling engine (Marques et al., 2007). Analyses were conducted

separately for each of the sampling regimes (birds on water vs. fly-
ing birds under three different distance measurement protocols,
see Section 2.2), and yielded separate estimates of detection prob-
ability ðp̂Þ, mean flock size ð�sÞ, as well as estimated density of flocks
ðD̂s � SEÞ. Using p̂, as well as information about average flock size
ð�sÞ, seabird densities were corrected for the proportion of birds
present but not observed and densities estimated (by program
Distance) as: D̂ ¼ D̂�s�s. Grid cells with density estimates based on
multiple methods for measuring distance to flying birds were
averaged, weighted by survey effort (using kilometres surveyed).

2.4. Environmental data

A wide range of environmental variables have been implicated
to explain seabird distribution. Previous studies have either
focused on modelling distributional patterns purely as a function
of geographic location (e.g., Certain et al., 2007), as a mixture of
geographic location and oceanography and physiography (e.g.,
Spear and Ainley, 2005) or more commonly, purely as a function
of oceanography and physiography (e.g., Huettmann and Diamond,
2001; Yen et al., 2004a; Yen et al., 2004b; O’Hara et al., 2006; Oppel
et al., 2012; Renner et al., 2013; Chivers et al., 2013). The scale at
which models are constructed are also highly variable, with grids
ranging from 1 km2 (e.g., Skov et al. 2008), to 400 km2 (e.g., Fauch-
ald et al., 2002), to 10 � 10 (Huettmann and Diamond, 2001) and
even 20 � 20 (Spear and Ainley, 2005).

The 10 � 10 analysis grid (Section 2.3) combined 3.5 years of
survey data within each grid cell. Therefore, we sought environ-
mental variables that matched this scale of spatial and temporal
resolution (Table 1). Shelf breaks and associated frontal zones
can lead to local concentrations of seabirds (Skov and Durinck,
1998). In the study area, the shelf break is a prominent physical
feature with a well documented impact on the distribution of local
seabirds (Brown, 1988a,1988b; Huettmann and Diamond, 2001),
acting as a proxy for persistent hydrographic features such as
fronts (Nur et al., 2011). This shelf break was identified using the

Fig. 1. Coastline (dark gray shading), bathymetry (indicated by 100 m isobath lines), and the location of key seabanks (100 m depth, light gray shading) within the Canadian
Maritimes.
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300 m isobath, and the ‘‘Euclidean Distance’’ tool in ArcGIS 9.3
(ESRI, 2008) used to produce the variable SHELFDIST. As with the
shelf break, sea banks are important sources of nutrient upwelling
and are well documented as primary spawning areas for many
species of commercial fish (Ashmole, 1971; Brander and Hurley,
1992). To model the potential influence of sea banks on seabirds,
100 m isobath polygons were identifed within the GIS, correspond-
ing to the banks labeled in Fig. 1. The proportion of each 10 � 10

prediction cell intersecting with sea bank polygons was then calcu-
lated using the ‘‘Zonal Statistics’’ tool in ArcGIS 9.3 (ESRI, 2008),
resulting in variable PBANK. Bathymetry and seafloor ruggedness
are also persistent physical features with meaningful variation at
10 � 10 scales. Data from the ETOPO2v2c data set of 2-min resolu-
tion distributed by the National Geophysical Data Centre (NGDC
2009) were integrated within a GIS to produce the variable DEPTH.
In keeping with earlier findings of the potential importance of sea
floor ‘‘roughness’’ (e.g., Yen et al., 2004b) a ruggedness index (RUG-
GED) was created using the method of Melton (1965):

RUGGED ¼maxðDEPTHÞ �minðDEPTHÞffiffiffiffiffiffiffiffiffiffiffi
Area
p ð1Þ

Earlier atlasses (Lock et al., 1994) have revealed seasonal
patterns in broad-scale distribution. We captured this effect using
variable SEASON, which was defined using the following catego-
ries: ‘‘spring’’ (March–April), ‘‘summer’’ (May–August), ‘‘fall’’
(September–October) and ‘‘winter’’ (November–February). In the
case of negative binomial and hurdle generalized linear models
(Section 2.5), fall densities served as the reference category for
assessing seasonal effects.

2.5. Model construction

Species distribution models (SDMs) were constructed using the
base library of the R Statistical Package (R Development Core Team,
2009) as well as the MASS library of Venables and Ripley (2002).
The glm.nb function (Venables and Ripley, 2002) was used to con-
struct negative binomial, generalized linear models (NB GLMs).
This approach uses a combination of maximum likelihood to esti-
mate the overdispersion parameter (h) and iteratively-reweighted
least squares to estimate the model coefficients. Because of the
overdispersion parameter, NB GLMs are more flexible than Poisson
GLMs in dealing with extra count variance (Hilbe, 2008).

Hurdle NB models (referred to henceforth as ‘Hurdle’ models)
were implemented using the pscl library of Zeileis et al. (2008).
These two-component models apply a binomial GLM to the ‘zero’
(absence) vs. non-zero (y > 0) observations, and a NB GLM to the
non-zero (y > 0) count data. In effect, an observation must be
non-zero in order to pass over the ‘‘hurdle’’ (Zuur et al., 2009)
and be modelled as a count-generating process. Predicted seabird
density was generated for each location as:

yexp ¼ l � p
p0

ð2Þ

where yexp is the expected number of seabirds, l is the expected
number based on the NB count process, p is the probability of a
non-zero count based on the binomial occurrence model, and p0

is the probability of a non-zero count based on the negative bino-
mial count model (using the notation of Zuur et al., 2009). Final
Hurdle models, therefore, involve estimation of two sets of coeffi-
cients: one for the binomial (the presence-absence part), and one
for the NB GLM (the abundance part).

No variable selection algorithms were used to determine the
covariates to retain/discard in the final NB GLM and Hurdle models.
Instead, predictive models were constructed using an information-
theoretic approach similar to that of Gray et al. (2010) and Lieske
et al. (2012). An all-combinations algorithm, implemented in the R
Statistical Package by D. Lieske (available upon request), computed
predictive models for all possible-combinations and sorted them
(lowest to highest) on the basis of Akaike Information Criterion
(AIC) values. Only the top 95% of models were retained, and the
weighted average of each coefficient was computed using the AIC
weight, Wi (Burnham and Anderson, 2002: 152). In the case of the
hurdle algorithm, model-averaged coefficients were computed for
both the binomial and NB GLM components. The advantage of this
approach is that it eliminates the arbitrariness associated with
stepwise model selection, and incorporates uncertainty directly into
the averaging of coefficients via AIC-based weightings. It also re-
duces reliance on a single set of estimates from one particular mod-
el, which is advantageous when estimates differ markedly across
models (Burnham and Anderson, 2002: 150). In the authors’ experi-
ence, it is practical to conduct model-averaging with as many as 16
covariates, though the processing time exceeded 11 min on a 64-bit
Intel Core i5-3317U CPU with 1.70 GHz clock speed and 6 GB of
random access memory. Certain types of models are not amenable
to an AIC-based model averaging approach, e.g., non-linear models
or pseudo-likelihood models that do not calculate AIC values.

Random forests (RF, Breiman, 2001) is a tree-based method that
employs bagging to aggregate the results of multiple, indepen-
dently generated classification trees (Hastie et al., 2001). An extra
level of randomness is introduced by randomly selecting the covar-
iates used to construct each tree (Breiman, 2001). This approach
constitutes a machine-learning alternative to NB and Hurdle
methods, and generates novel predictions by ‘‘dropping’’ new in-
puts into the RF classifier to determine the majority class or value
across the trees (Breiman, 2001). The randomForest library of Liaw
and Wiener (2002) was used to construct RF models. Library
randomForest also provides information on variable importance,
which is determined by how much prediction error increases when
testing data for that variable is permuted while all others are left
unchanged (Liaw and Wiener, 2002). Empirical evidence suggests
the random forest is sensitive to the choice of the number of
covariates (Oppel and Huettmann 2010), but the number of trees
comprising the RF classifier can be influential. For each species
we examined variable combinations of the number of covariates
(1–4) and number of trees (500, 1000, and 2000) and inspected
the predictive accuracy of the results (Section 2.6). On the basis

Table 1
Environmental variables used to construct seabird species distribution models.

Abbreviation Variable Unit Data provider Website address

DEPTH Mean seadepth m National Geophysical Data Center
(NOAA)

http://www.ngdc.noaa.gov/mgg/global/
etopo2.html

PBANK Percentage of area with seabank % GIS-derived from 100 m seadepth
contours

NA

RUGGED Melton ruggedness index Standardized
variation

GIS-derived product of DEPTH data Melton (1965)

SEASON Categorical variable (fall,spring,
summer,winter)

Dummy indicator
variable

NA NA

SHELFDIST Mean distance to shelfbreak (300 m
isobath)

m GIS-derived product NA
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Fig. 2. Seasonally-specific survey effort, indicated by the total kilometers of transects surveyed in each 10 � 10 grid cell over the period March 1, 2006 to October 31, 2009 (a:
March–April ‘‘spring’’, b: May–August ‘‘summer’’, c: September–October ‘‘fall’’, d: November–February ‘‘winter’’).

Fig. 3. Density of Black-legged Kittiwake (per km2) for 10 � 10 survey grid cells, for spring (a, March–April), summer (b, May–August), fall (c, September–October), and winter
(d, November–February).
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Fig. 4. Density of Dovekie (per km2) for 10 � 10 survey grid cells, for spring (a, Mar–April), summer (b, May–August), fall (c, September–October), and winter (d, November–
February).

Fig. 5. Density of Northern Fulmar (per km2) for 10 � 10 survey grid cells, for spring (a, March–April), summer (b, May–August), fall (c, September–October), and winter (d,
November–February).
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of these results, 500 trees were constructed for NOFU, and 1000
trees for both BLKI and DOVE. One covariate was sampled for
NOFU, four for BLKI, and three for DOVE.

Ensemble predictions were generated by taking the arithmetic
mean of the predictions from the NB GLM, Hurdle GLM, and RF mod-
els (the so-called ‘‘committee averaging’’ method, Araújo and New,
2007; Das et al., 2008), weighted by the predictive power of each
method (Section 2.6). A recent comparative analysis performed by
Marmion et al. (2009) indicated that other measures of calculating
consensus (e.g., the use of median values) performed about the same
or worse, which is consistent with the general findings reported in
the ensemble forecasting literature (Clemen, 1989).

2.6. Model evaluation

Observed (‘optimistic’) predictive power was assessed using the
correlation coefficient (robs) of observed and predicted densities. To
correct for model overfitting (Harrell, 2001), we constructed 100
independent, random samples of training and testing data (80%
and 20% of original data, respectively), and measured bias by
calculating the average difference in correlation coefficient:

bias ¼ 1
n
�
Xn

iter¼1

robs � riter ð3Þ

Bias-corrected correlation coefficients (rcorr), equivalent to
robs–radj, defined the weights for calculation of the ensemble
prediction (Section 2.5).

2.7. Assessment of potential sensitivity

The ensemble predictions from each of the species distribution
models were combined to produce seasonally-specific sensitivity
maps. Potential sensitivity was quantified for each location in the
prediction surface as the sum of the relative importance of that
spatial unit (R) for each of the k species:

Sensitivity index ¼
Xk

i¼1

Ri ð4Þ

where R was defined as predicted abundance, standardized by
scaling from 0 to 1 to allow comparisons between species:

R ¼ lbound
maxðlboundÞ ; where lbound ¼ ypred �minðypredÞ ð5Þ

The scaling of ensemble model predictions (Eq. (5)) was based
on all values pooled, not just those from specific seasons. Adopting
this approach ensured that seasonal shifts in seabird community
usage patterns could be readily visualized and detected. It should
be noted that when data is available to justify the use of species-
specific sensitivities to particular hazards, Eq. (4) can be modified
to incorporate species-specific weightings.

2.8. Assessment of oiling risk

Detection of chronic, small-scale oil pollution is challenging gi-
ven the size of the marine area and the fact that the probability of
detecting oil discharges is low and highly variable. Using aerial and
satellite surveillance data gathered from offshore Nova Scotia be-
tween June, 2003 and September, 2008, previous work calculated
an oil loading index (Lieske et al., 2011):

Oil loadingi ¼ Number of oiling eventsi=number of surveysi

ð6Þ

for each 50 km � 50 km grid cell, i (738 in total). While seabird
(Section 2.2) and oil pollution monitoring was analyzed at slightly
different scales (10 � 10 vs. 50 km � 50 km), both information

sources complemented each other in the sense of being spread over
the same spatial region as well as overlapping in time. Oil loading
information from Lieske et al. (2011) was used to produce the oil
risk map.
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Fig. 6. Variable importance for negative binomial (NB) generalized linear-based
SDMs, as indicated by regression coefficients for standardized covariates. Also
shown are the estimated confidence intervals (95%) derived from testing and
training data.
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2.9. Assessment of oil pollution vulnerability

‘Vulnerability’ is a function of the presence of a sensitive ecolog-
ical feature as well as the presence of a risk or hazard (Turner et al.,

2003; Zacharias and Gregr, 2005). Within this framework, a species
can be sensitive to oil pollution because of its foraging mode, but
not vulnerable if it forages in a marine area devoid of oil pollution.
For a GIS-based analysis spread over a very large area, indices are a
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tractable way to approximate oil-pollution vulnerability at partic-
ular locations. For instance, Zacharias and Gregr (2005) produced
vulnerability maps by multiplicatively overlaying information
about sensitivity (regression model predictions of whale presence)
and stressor intensity (hypothesized distance-decay relationship
characterizing the impact of acoustic pollution). We have applied
a similar approach, but instead used relative abundance as a
measure of sensitivity (scaled from 0 to 1 to make it possible to
compare between species), and an oil-pollution index from Lieske
et al. (2011, Section 2.8) to represent risk:

Vulnerability index ¼ Sensitivity index � Oil Loading index ð7Þ

3. Results

3.1. Species observations

Distance-sampling methods allowed for the estimation of
seabird densities, by species group and season, at a 10 � 10 resolu-
tion. Survey effort varied somewhat from season to season (Fig. 2),
with sampling most extensive during the summer period and least
during the winter period. The bulk of the surveys occurred across
the Scotian Shelf, though the Cabot Strait, the offshore of south-
west Nova Scotia, and the Laurentian Channel were also surveyed.
Inspection of the resulting density distributions suggest significant
offshore aggregations of Black-legged Kittiwake in the winter
and spring seasons (Fig. 3), and concentrations of Dovekie on the
shelf and shelf break during the winter-spring period (Fig. 4).
Northern Fulmar occurred throughout the year, but were also most
abundant during the winter-spring (Fig. 5).

3.2. Model construction and evaluation

Season was, in general, an important covariate (Figs. 6 and 7),
though it played a minor role in RF predictions for the Northern
Fulmar (Fig. 8). Relative to fall occurrences, all three species
showed strong winter responses under NB models (Fig. 6). The
same was true for Hurdle models (Fig. 7), though uncertainty in
the coefficients for the count-component tended to be higher. In
the case of the Northern Fulmar, positive association with winter
manifested in the count rather than the presence portion of the
model (Fig. 7). Black-legged Kittiwake were negatively associated
with distance to shelf break (SHELFDIST, Figs. 6 and 7), though
the covariate played a lesser role in RF models (Fig. 8). DEPTH
was universally important regardless of modelling method, while
sea floor ruggedness (RUGGED) was important in some combina-
tions (e.g., Northern Fulmar RF model, Fig. 8).

No one algorithm (NB, Hurdle, RF) exhibited consistently supe-
rior performance over all species, though the Hurdle models
tended to under-perform relative to NB and RF (Table 2, Fig. 9).
Ensemble predictions, weighted by bias-corrected rcorr values, per-
formed the best for the Black-legged Kittiwake and Dovekie. For
the Northern Fulmar, agreement was about the same for NB and
ensemble approaches. Overall explanatory power was highest for
the Dovekie, which yielded a r = 0.632 (r2 = 0.40), followed by the
Black-legged Kittiwake (r2 = 0.30) and Northern Fulmar (r2 = 0.18).

3.3. Assessment of species vulnerability

Composite species sensitivity maps revealed some striking
seasonal relationships (Figs.10a–d and 11). Composite abundance
peaked in spring and winter, shifting into the pelagic zone and
away from the shelf break in spring (Fig. 10a), but concentrating
over the shelf during winter (Fig. 10d). The presence of relatively
fewer individuals in the summer and fall would serve as a

protective factor in the face of oil pollution risk during those times
(Fig. 11), though this group may still be exposed to oiling risks in
breeding and migratory waters. The known oiling hazard, based
on the combination of aerial and satellite surveillance, revealed rel-
atively heavy pollution in the vicinity of major ports (e.g., Halifax
and Sydney, Nova Scotia), and lower but persistent and widespread
pollution throughout the shelf (Fig. 10e). The analysis of oiling
hazard was based on data that was not tabulated by season, but
it still illustrated important patterns of risk. Winter composite
vulnerability was approximated by multiplying winter sensitivity
(Fig. 10d) with oiling hazard (Fig. 10e), resulting in the composite
vulnerability map of Fig. 10f.
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Fig. 8. Variable importance for species distribution models developed using
random forest machine learning. ‘‘Importance’’ was assessed as the percentage
change in prediction error when each variable is permuted out of the set of
covariates used by the algorithm classifier.
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4. Discussion

Conservation planning is a spatially-explicit exercise (Magness
et al., 2011). The effective management of human activity in mar-
ine environments, e.g., through the designation of marine pro-
tected areas (MPAs), requires a synthesis of all available
information (Araújo and New, 2007; Ronconi et al., 2012), and
SDMs offer a powerful way to combine biological surveys with
environmental information to better understand habitat usage
through space and time. This study demonstrates an efficient
framework for integrating multiple species data from two different
monitoring programs across several implementation steps:
GIS-based data management, state-of-the-art modelling, and
production of a key spatial planning product. Each aspect of this
framework will be discussed in turn.

Through a regular, grid-based approach (‘‘Eulerian’’ data, see
Tremblay et al., 2009) data gathered through ship-based surveys

were aggregated across a 10 � 10 grid to allow accurate density
estimation. Factors which impact seabird detection, e.g., sea
condition, or whether a bird was in the air or on the water, were
statistically accounted for as covariates using distance sampling
(Buckland et al., 2001; Marques et al., 2007). While unable to
account for all the variability in distribution, season, sea depth
and distance to shelf breaks were important and influential predic-
tors. Proximity to the shelf break, for instance, stood out as an
important factor influencing Black-legged Kittiwake numbers,
while seafloor ‘ruggedness’ (RUGGED) with associated with
Northern Fulmar RF models. Predictive power was highest for
two of the three species’ ensemble models, yielding correlation
coefficients as high or higher as SDM studies conducted at finer
scales (e.g., Yen et al., 2004b; Potts and Elith, 2006).

Despite an extensive history in other disciplines (e.g.,
macroeconomics and psychology, see Clemen, 1989), ensemble
prediction/forecasting has only recently been applied in SDM

Table 2
Agreement between predicted and observed seabird densities, as measured by the correlation coefficient (r). One hundred iterations of training and testing data were used to
assess the degree of over- (or under-) optimism in agreement measures (bias), which was used to correct the original correlation measures (rcorr). The rcorr measures were used to
define the weights for calculation of the ensemble model predictions.

Method Species

Black-legged Kittiwake Dovekie Northern Fulmar

r bias rcorr r bias rcorr r bias rcorr

NB GLM 0.544 0.026 0.518 0.604 0.020 0.584 0.431 0.13 0.305
Hurdle 0.533 0.10 0.430 0.576 0.018 0.558 0.371 0.089 0.282
RF 0.508 �0.003 0.512 0.614 �0.003 0.617 0.357 �0.069 0.426
Ensemb. 0.549 0.632 0.430
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Fig. 9. Scatterplot of observed versus predicted Dovekie densities (birds/km2), based on (a) negative binomial (NB) glm, (b) Hurdle, (c) Random Forest (RF), and (d) ensemble
methods.
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(Araújo and New, 2007; Oppel et al., 2012). The focus of most SDM
papers published in the first decade of the 21st century has con-
centrated on comparing relative performance (e.g., Elith et al.,

2006). As a consequence, the SDM literature is replete with a wide
array of single-method modelling approaches where no attempt is
made to gather the ‘‘consensus opinion’’ presented by a diversity of

a b

c d

fe

Fig. 10. Seasonally-specific sensitivity maps, based on the sum of the relative densities derived from ensemble model predictions for the three species. Seasons were defined
as: (a) spring (March–April), (b) summer (May–August), (c) fall (September–October), and (d) winter (November–February). Also shown is overall oiling hazard ((e),
reproduced from Lieske et al. 2011) and the composite vulnerability index for winter (f).
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algorithms. While individual methods might be well calibrated and
offer high predictive accuracy for the data at hand, predictive
power may be substantially poorer in unsampled locations, or
under changing environmental conditions (Marmion et al., 2009).
Jones-Farrand et al. (2011) argue that basing conservation deci-
sions on the basis of predictions from a single model is ‘‘risky’’,
in that problems are formulated under a specific set of objectives,
constraints and assumptions that may not apply more generally.
Ensemble approaches have an excellent track record for producing
robust predictions, helping to reduce uncertainty and, in the pro-
cess, increasing confidence in the decisions derived from them. In
this study, no one algorithm (NB, Hurdle, RF) exhibited consis-
tently superior performance over all species, though the Hurdle
models tended to under-perform relative to NB and RF. Simple
averaging of the NB, Hurdle and RF predictions – weighted by
bias-corrected predictive accuracy – produced ensemble
predictions that were as good or better than the best individual
modelling method.

Deriving inferences from model predictions requires useful spa-
tial products. In this study, predicted abundance based on the
ensemble model was used to define the relative importance of
n = 1243 locations in the study area for each species indepen-
dently. Scaling was applied, based on the entire range of predicted
abundances across all seasons, in order to rank the relative usage of
each of these locations. Potential sensitivity to chronic oil pollution
was then assessed as the sum of the relative usage across species,
enabling the simultaneous visualization of the distributional
patterns for the group. The composite picture that emerges is
one of shifting temporal and spatial patterns of abundance. During
the winter and spring, the seabird community is enlarged by the
influx of non-breeding individuals from multiple regions: Dovekies
from Arctic breeding grounds, particularly Greenland (Gaston and
Jones, 1998), Black-legged Kittwake from the eastern North
Atlantic (Bogdanova et al., 2011), and Northern Fulmar from the
Canadian High Arctic (Mallory et al., 2008).

When the combined winter distribution of this group was mul-
tiplied with oiling hazard, vulnerability was revealed to be highest
in the vicinity of major ports (e.g., Halifax and Sydney, Nova
Scotia). But the vulnerability map also indicated lower but
widespread levels of oiling risk throughout the shelf, presumably
associated with persistently high levels of shipping traffic and

ongoing petroleum extraction and exploration. Given the associa-
tion between sea bird distribution and the shelf break, we
recommend that the shelf break region receive more intensive
monitoring to characterize offshore oil pollution risk at finer spa-
tial and temporal scales. Such information would help improve
understanding of the risk exposure of birds foraging in offshore
Nova Scotia. However, it should be noted that Scotian Shelf sea-
birds are not just vulnerable to oil pollution in Canadian maritime
waters; migratory connectivity (Webster et al., 2002) will expose
seabirds to a wider network of hazards throughout their range.

The value of at-sea surveys are clear when one considers how
difficult it can be to assess the potential vulnerability of seabirds
outside the breeding season, when species are widely distributed
throughout remote locations (Votier et al., 2005) and others may
be present as transient non-breeders. Future work should pursue
greater integration of models from different data sets, which would
allow broad as well as fine-scale patterns to be explored and
important patterns to be detected. For instance, combining telem-
etry tracking information with broad-scale distributional informa-
tion would allow for analysis of seabird activity at multiple scales,
widening the range of hypotheses that could be tested. The
techniques developed in this paper will not only enhance risk
assessment at ‘‘local’’ scales, but can be also used to tie in risks that
are transmitted over a much larger area through migratory connec-
tivity. But for benefits to be maximized, seabird research programs
need to be supported by the routine, coordinated acquisition of
marine hazard data (e.g., fishing activity, oil discharges).
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