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Abstract: Whether considering the cumulative impact of chronic, small-

size oil discharges or accidents associated with marine traffic and 

offshore oil and gas development, seabirds face a variety of threats in 

the marine environment. Assessing the vulnerabilities of seabirds to 

maritime hazards requires an understanding of their species distribution, 

and a means for combining this information across groups. Using at-sea 

survey data gathered as part of a regional monitoring program, an 

efficient framework for integrating multi-species data was developed. 

Density estimates, derived from counts of species known to be 

particularly vulnerable to oil pollution, were used to construct multiple 

species distribution models (SDMs). The structural difficulties 

associated with sampling sparsely distributed individuals that can occur 

in large, localized concentrations led to the use of three modelling 

techniques potentially well suited for this type of data: negative 

binomial, "hurdle", and random forest methods. Predicted abundances were 

combined to produce an ensemble forecast, and multi-species potential 

vulnerability maps developed to identify core areas. The maps confirmed 

the general importance of the shelf break and sea banks, but distribution 

was highly seasonally specific. A pattern of shifting presence emerged, 

with some species disappearing from the region (e.g., storm-petrels and 

shearwaters in winter) and others increasing at the same time (e.g., 

Black-legged Kittiwakes, Rissa tridactyla). Across all species, spring 

(March - April) stood out as a period of peak importance, though seasonal 

variation in the usage of the offshore marine environment may render the 

seabird community vulnerable to different threats throughout the year. 

This study illustrates how multi-species distribution modelling can 

predict seasonal usage patterns, and contribute to an awareness of the 

collective vulnerability of groups of seabirds to hazards distributed 

over wide geographic areas. 
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To the Editor(s), 
 
On behalf of my colleagues and myself, please find attached the manuscript entitled 
"Maps, Models, and Marine Vulnerability: Assessing the Community Distribution of 
Seabirds at-Sea" for consideration in Biological Conservation. 
 
This paper is an original application of ensemble modelling to assess the distribution of a 
community of seabirds that occur in Maritime Canada. As this is an area subject to 
significant marine traffic, chronic small-scale oil pollution, and ongoing oil and gas 
extraction and exploration, this group of seabirds (Black-legged Kittiwakes, Dovekie, 
murres, Northern Gannet and storm-petrels) constitute a vulnerable community. By 
combining the predictions from three modelling methods (negative binomial GLM, 
hurdle GLM, and random forest machine learning) to produce an ensemble prediction, we 
assessed the predictive accuracy of these techniques and demonstrate how multi-species 
vulnerability maps can be generated to identify core areas of conservation concern. 
 
This work builds nicely on papers recently published in Biological Conservation, e.g., 
Oppel et al. (2012): Comparison of five modelling techniques to predict the spatial 
distribution and abundance of seabirds, Biol. Cons. 156, 91-104, and feel that the results 
will be of wide interest to its readership. 
 
The manuscript is slightly less than 7500 words in length and has not been submitted for 
publication elsewhere. 
 
Should you have any questions, please do not hesitate to contact me at the following 
address.  I look forward to hearing from you in due course. 
 
Sincerely, 

 
 
David Lieske, Ph.D.  
Department of Geography and Environment, Mount Allison University, 
144 Main Street, Sackville, New Brunswick, 
E4L 1A7, Canadaph: (506) 364-2315; fax: (506) 364-2625 
dlieske@mta.ca 

*Cover Letter



   Page 1 
  

Highlights 1 
 2 

 Distribution models were constructed for a vulnerable group of seabirds. 3 
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ABSTRACT 34 

 35 

Whether considering the cumulative impact of chronic, small-size oil discharges or accidents associated with marine 36 

traffic and offshore oil and gas development, seabirds face a variety of threats in the marine environment. Assessing the 37 

vulnerabilities of seabirds to maritime hazards requires an understanding of their species distribution, and a means for 38 

combining this information across groups. Using at-sea survey data gathered as part of a regional monitoring program, 39 

an efficient framework for integrating multi-species data was developed. Density estimates, derived from counts of 40 

species known to be particularly vulnerable to oil pollution, were used to construct multiple species distribution models 41 

(SDMs). The structural difficulties associated with sampling sparsely distributed individuals that can occur in large, 42 

localized concentrations led to the use of three modelling techniques potentially well suited for this type of data: 43 

negative binomial, "hurdle", and random forest methods. Predicted abundances were combined to produce an ensemble 44 

forecast, and multi-species potential vulnerability maps developed to identify core areas. The maps confirmed the 45 

general importance of the shelf break and sea banks, but distribution was highly seasonally specific. A pattern of 46 

shifting presence emerged, with some species disappearing from the region (e.g., storm-petrels and shearwaters in 47 

winter) and others increasing at the same time (e.g., Black-legged Kittiwakes, Rissa tridactyla). Across all species, 48 

spring (March - April) stood out as a period of peak importance, though seasonal variation in the usage of the offshore 49 

marine environment may render the seabird community vulnerable to different threats throughout the year. This study 50 

illustrates how multi-species distribution modelling can predict seasonal usage patterns, and contribute to an awareness 51 

of the collective vulnerability of groups of seabirds to hazards distributed over wide geographic areas. 52 

 53 
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1. Introduction 67 

 68 

 69 

Successful conservation planning hinges on an ability to identify hazards, as well as an awareness of species 70 

vulnerability. In marine contexts, threats originate from a number of factors, including: small-scale, chronic oil 71 

discharges associated with maritime traffic (Wiese and Ryan, 2003); wide-scale accidental releases of oil (Henkel et al., 72 

2012); fisheries bycatch (Tasker et al., 2000; Hamel et al., 2009); collisions with and loss of habitat associated with 73 

offshore wind farms (Exo et al. 2003); and negative interactions with offshore oil drilling platforms (Wiese et al., 2001). 74 

Heavier-bodied, diving seabirds are at greater risk of exposure to these hazards by virtue of the amount of time they 75 

spend interacting with the sea-surface-air interface (Camphuysen, 1998) but they are also vulnerable as a result of low 76 

fecundity (Votier et al., 2005). Mitigating anthropogenic risks first requires information about organisms' usage of the 77 

marine environment, in both time and space, so that priority areas can be identified and effective management strategies 78 

developed. Unfortunately, the very large area of ocean habitat potentially utilized by seabirds makes it logistically 79 

difficult to enumerate these species (Brown, 1980; McKinnon et al., 2009).  Pelagic surveys rely heavily on moving 80 

platforms ('ships of opportunity') which may or may not be primarily tasked with gathering seabird information. Large 81 

gaps in knowledge inevitably occur, especially during the non-breeding season when, no longer constrained by central 82 

place foraging within range of their colonies, species are free to roam over much larger distances (Huettmann and 83 

Diamond, 2001; Oppel et al., 2012).  84 

 85 

In terrestrial contexts, there are many successful applications of species distribution modelling (SDM, Guisan and 86 

Zimmermann, 2000; Franklin, 2009) to predict habitat usage in unsurveyed areas (Austin, 2002; Shriner et al., 2002). 87 

SDMs work by combining empirical patterns of occurrence with Geographic Information System (GIS)-derived 88 

information about environmental conditions, and are a valuable tool for conducting conservation planning (Jones-89 

Farrand, 2011). Applying this methodology in marine contexts can be quite difficult, however. Marine environments are 90 

highly dynamic (Haney, 1989), and difficult to represent within a standard GIS. For instance, fronts, widely recognized 91 

as important areas of nutrient entrapment and increased biological productivity (Bakun, 1996), can shift position over a 92 

period of hours (Durazo et al., 1998). Species may respond by rapidly shifting their distributions to benefit from these 93 

changing patterns of food abundance. Additionally, seabirds simultaneously display sparse distributions over wide 94 

areas, as well as a tendency to form large localized aggregations in productive foraging areas (Briggs et al., 1987; Hunt 95 

and Schneider, 1987; Fauchald et al., 2002; Clarke et al., 2003). This produces data distributions with both a large 96 

number of non-observations (the so-called ‘zero-inflation' problem) and occasionally large concentrations of highly 97 

variable abundance (the so-called ‘overdispersion’ problem). Take together, zero inflation and overdispersion pose 98 

serious problems for SDMs based on traditional techniques (Hilbe, 2008). 99 

 100 
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Over the past 20-years, there has been a notable proliferation of algorithms for modelling animal occurrence and 101 

abundance (Hegel et al., 2010). Such methods range from presence-only techniques (e.g., maximum entropy or 102 

MAXENT, Phillips et al., 2006; ecological niche factor analysis or ENFA, Hirzel et al., 2002) to presence-absence 103 

(logistic generalized linear or logistic generalized additive models), to abundance (Poisson or negative binomial 104 

regression). Machine learning methods, such as random forest (Breiman, 2001), can be applied in any of these cases. 105 

The very large number of available methods renders it difficult to choose a technique (Jones-Farrand et al., 2011), so is 106 

a decision often based on investigator preference or familiarity (Araújo and New, 2007; Jones-Farrand et al., 2011). 107 

Current research, however, points to the advantages of combining the predictions of different modelling methods, a 108 

process referred to as ensemble modelling (Araújo and New, 2007; Oppel et al., 2012) or decision fusion (Das et al., 109 

2008). This approach allows models to reinforce each other when concensus exists, while dampening divergent 110 

predictions when they are discrepant. The implicit assumption is while the true underlying process is unknown, different 111 

forecasting models are able to capture different components of the underlying signal (Clemen, 1989). The advantages 112 

are expected to be maximized when different, but complementary, modelling algorithms are employed.  113 

 114 

Marine SDMs are rare (Robinson et al., 2011), and SDMs based on shipboard surveys are even rarer (Oppel et al., 115 

2012). Due to four years of pelagic surveys conducted as part of the east coast  Eastern Canada Seabirds at Sea  116 

monitoring program, this study to was able to extend the approach developed by Oppel et al. (2012) and examine the at-117 

sea distribution of a range of seabirds that occur on or near the Scotian Shelf of Nova Scotia. Density data were 118 

corrected for variation in detectability, and three different approaches selected for their theoretical suitability to deal 119 

with zero-inflated, overdispersed data: negative binomial (NB) generalized linear modelling, Hurdle modelling, and 120 

random forest (RF) machine learning. Results from each of these methods were combined to produce an ensemble 121 

prediction, the accuracy of which were carefully assessed and compared. In addition to providing a case-example of 122 

how multi-method, multi-species models can be informatively combined, seasonally-specific community vulnerability 123 

maps were generated to assist regional conservation planning. 124 

 125 

 126 

 127 

2. Methods 128 

 129 

2.1. Data collection 130 

 131 

The focal area was the Scotian Shelf with a maximum depth of about 200 m, extending 150-250 km offshore of the 132 

province of Nova Scotia, Canada. Also included were portions of the Bay of Fundy as well as the Cabot Strait (Figure 133 

1). At the shelf break sea depth increases rapidly to abyssal levels exceeding 3000 m. The topography of the shelf, 134 
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combined with tidal forces, wind, and fluctuations of offshore currents associated with the Gulf Stream, result in 135 

upwelling and partial gyres capable of retaining nutrients and concentrating marine biomass (Smith and Petrie, 1982; 136 

Hannah et al., 2001; NSMN, 2010). A number of banks occur throughout the shelf, some of which (e.g., Browns Bank, 137 

Sable Island Bank, Georges Bank) experience tidally-produced gyres of sufficient strength to also retain nutrients and 138 

concentrate prey (Hannah et al., 2001) 139 

 140 

 141 

2.2. At-sea survey data 142 

 143 

The focal species of this study were: (1) Black-legged Kittiwake (Rissa tridactyla); (2) Dovekie (Alle alle); (3) murres 144 

(Thick-billed, Uria lomvia; Common Murres, U. aalge; unidentified Uria sp.); (4) Northern Gannet (Morus bassanus); 145 

(5) storm-petrels (Wilson’s Storm-Petrel, Oceanites oceanicus; Leach’s Storm-Petrel, Oceanodroma leucorhoa; 146 

unidentified sp.) and (6) shearwaters (Greater Shearwater, Puffinus gravis; Sooty Shearwater, P. griseus; Manx 147 

Shearwater, P. puffinus; Cory’s Shearwater Calonectris diomedea; Audubon’s Shearwater, P. lherminieri; unidentified 148 

sp.), also grouped to enhance sample size and maximize precision of the density estimates (see Section 2.3). As a group, 149 

these species exhibit high vulnerability to sea-surface oil pollution (Brown, 1980; Camphuysen, 1998), are a significant 150 

presence on the Scotian Shelf, and encompass a cross section of ecological niches: e.g., surface feeders (Black-legged 151 

Kittiwake, Leach's Storm-Petrel), deep-water pursuit divers (murres, Dovekie), plunge divers (Northern Gannet), and 152 

surface pursuit divers (shearwaters). 153 

 154 

Observations from 76 surveys were gathered from March 1, 2006 to October 31, 2009 as part of the Eastern Canada 155 

Seabirds at Sea (ECSAS) program (Fifield et al., 2009). The ECSAS survey protocol (Gjerdrum et al., 2012) 156 

incorporates the recommendations of Tasker et al. (1984), as well as modern distance sampling techniques (Buckland et 157 

al., 2001), and relies on ships of opportunity to conduct the survey. 158 

 159 

All birds were counted in a 900 arc to one side of the vessel, out to a maximum distance of 300 m. Birds on the water 160 

were counted and assigned to one of four distance classes (0-50 m, 51-100 m, 101-200 m, 201-300 m) on the basis of 161 

perpendicular distance from the vessel path, confirmed (when necessary) using a distance gauge. Flying birds were 162 

sampled using a “snapshot” methodology such that all flocks present within the 900 arc 300 m to one side and 300 m 163 

ahead of the ship were recorded. The application of the “snapshot” methodology was necessary to offset the tendency to 164 

over estimate the abundance of flying birds, which enter and re-enter the field of view (Tasker et al., 1984). Due to 165 

ongoing development of the survey protocol, there was some variation in the way in which distance was estimated to 166 

flying birds. From October to December, 2007, distances were not measured for flying birds. Between January and July, 167 

2008, flying birds were assigned to distance classes based on perpendicular distance to the vessel path. After July, 2008, 168 
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distances to flying birds were measured radially from the vessel. As a result of this variation in sampling, there were 169 

really three different protocols applied to flying birds, necessitating three separate density estimates be calculated in 170 

program Distance 6 Release 2 (Thomas et al., 2010) and combined at the end of the analysis (Fifield et al., 2009).   171 

 172 

Observations were only conducted when the ship was travelling at a minimum speed of 4 knots (7.4 km/h) and a 173 

maximum of 19 knots (35.2 km/h). When visibility was poor (due to rain or fog) the actual width of the visible transect 174 

(e.g., 200 m) was recorded. 175 

 176 

2.3. Density estimation 177 

 178 

Distance 6 Release 2 (Thomas et al., 2010) was used to estimate seabird densities, stratified by season and 10 x 10 grid 179 

cell. We started with basic key functions (half-normal), and optional series expansion terms chosen from one of three 180 

families (cosine, hermite, or polynomial). Visual inspection and the χ2 goodness-of-fit test were used to assess detection 181 

function model fit, and then an attempt was made to improve fit by either choosing a different key function (hazard rate 182 

or uniform with optional series expansion terms) or by including explanatory covariates (such as wind speed, sea state, 183 

wave height and/or observer) using the multi-covariate distance sampling engine (Marques et al., 2007). Analyses were 184 

conducted separately for each of the sampling regimes (birds on water vs. flying birds under three different distance 185 

measurement protocols, see Section 2.2), and yielded separate estimates of detection probability ( p̂ ), mean flock size 186 

( s ), as well as estimated density of flocks ( sD̂ +/- SE). Using p̂ , as well as information about average flock size ( s ), 187 

seabird densities were corrected for the proportion of birds present but not observed and densities estimated (by 188 

program Distance) as: sDD s *ˆˆ  . Final densities were computed as the weighted average of the three different 189 

sampling regimes, based on kilometers surveyed during each survey method. 190 

  191 

 192 

2.4. Environmental data 193 

 194 

A wide range of oceanographic and biological variables have been implicated to explain seabird distribution (Table 1). 195 

Broadly speaking, previous studies have either focused on modelling distributional patterns or relating occurrence to 196 

oceanographic and bathymetric features or processes. For instance, Certain et al. (2007) used GAM models to produce 197 

trend surfaces of seabird occurrence purely as a function of latitude and longitude (although predictions were further 198 

refined using residual kriging) but no oceanographic information informed the resulting prediction surface. In contrast, 199 

Yen et al. (2004a) integrated factors such as sea-surface temperature (averaged over a 5-month period) and an index of 200 

herring spawning to produce predictive maps. 201 
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 202 

Given the prominence of the Scotian Shelf in the study region, as well as previous work documenting the influence of 203 

shelf-break and sea bank processes on seabird distribution in this area (e.g., Brown, 1988a; Brown 1988b; Huettmann 204 

and Diamond, 2001), regional predictive models were constructed with a focus on bathymetric properties (Table 2). 205 

Data from the ETOPO2v2c data set of 2-minute resolution distributed by the National Geophysical Data Centre (NGDC 206 

2009) were integrated within a GIS and used to produce the variable DEPTH. The shelf break was identified using the 207 

300 m isobath, and distances to this linear feature measured using the "Euclidean Distance" tool in ArcGIS 9.3 (ESRI 208 

2008) as variable SHELFDIST. In keeping with earlier findings of the potential importance of sea floor “roughness” 209 

(e.g., Yen et al., 2004b) the coefficient of variation of sea depth (DEPTH_CV) was also calculated. As with the shelf 210 

break, sea banks are important sources of nutrient upwelling and are well documented as primary spawning areas for 211 

many species of commercial fish (Ashmole, 1971; Brander and Hurley, 1992). To model the potential influence of sea 212 

banks on seabirds, 100 m isobath polygons were identifed within the GIS, corresponding to the banks labeled in Figure 213 

1. The proportion of each 10 x 10 prediction cell intersecting with sea bank polygons was then calculated using the 214 

"Zonal Statistics" tool in ArcGIS 9.3 (ESRI, 2008), resulting in variable PBANK. Finally, preliminary analysis, as well 215 

as earlier atlas work (Lock et al., 1994), indicated that broad-scale distributional patterns were highly seasonal. To 216 

capture seasonal variation in abundances, variable SEASON was defined using the following categories: “spring” 217 

(March-April), “summer” (May-August), “fall” (September-October) and “winter” (November-February). In the case of 218 

negative binomial and hurdle generalized linear models (Section 2.5), fall densities served as the reference category for 219 

assessing seasonal effects. 220 

 221 

 222 

2.5. Model construction 223 

 224 

Species distribution models (SDMs) were constructed using the base library of the R Statistical Package (R 225 

Development Core Team 2009) as well as the MASS library of Venables and Ripley (2002). The glm.nb function 226 

(Venables and Ripley, 2002) was used to construct negative binomial, generalized linear models (NB GLMs). This 227 

approach uses a combination of maximum likelihood to estimate the overdispersion parameter (θ) and iteratively-228 

reweighted least squares to estimate the model coefficients. Because of the overdispersion parameter, NB GLMs are 229 

more flexible than Poisson GLMs in dealing with extra count variance (Hilbe, 2008). 230 

 231 

Hurdle NB models (referred to henceforth as 'Hurdle' models) were implemented using the pscl library of Zeileis et al. 232 

(2007). These two-component models apply a binomial GLM to the 'zero' (absence) vs. non-zero (y > 0) observations, 233 

and a NB GLM to the non-zero (y > 0)  count data. In effect, an observation must be non-zero in order to pass over the 234 

"hurdle" (Zuur et al., 2009) and be modelled as a count-generating process. Predictions at any given location were 235 
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generated as the expected number of seabirds (via the NB GLM) times the fraction of the probability of a non-zero 236 

count binomial to a non-zero count negative binomial (Zuur et al., 2009). Final Hurdle models, therefore, involve 237 

estimation of two sets of coefficients: one for the binomial (the presence-absence part), and one for the NB GLM (the 238 

abundance part). 239 

 240 

No variable selection algorithms were used to determine the covariates to retain/discard in the final NB GLM and 241 

Hurdle models. Instead, predictive models were constructed using an information-theoretic approach similar to that of 242 

Gray et al. (2010) and Lieske et al. (2012). An all-combinations algorithm, implemented in the R Statistical Package by 243 

D. Lieske (available upon request), computed predictive models for all possible-combinations and sorted them (lowest 244 

to highest) on the basis of Akaike Information Criterion (AIC) values. Only the top 95% of models were retained, and 245 

the weighted average of each coefficient was computed using the AIC weight, Wi  (Burnham and Anderson, 2002). In 246 

the case of the hurdle algorithm, model averaged coefficients were computed for both the binomial and NB GLM 247 

components. 248 

 249 

Random forests (RF, Breiman, 2001) constitutes a machine-learning alternative to NB and Hurdle methods, and 250 

supports its own internal ensemble learning algorithm to construct multiple tree-structured classifiers (Liaw and Wiener, 251 

2002). Using the RF approach, novel predictions are obtained by "dropping" new inputs into the RF classifiers and then 252 

combining the "votes" to determine the most popular class or value (Breiman, 2001). The randomForest library of Liaw 253 

and Wiener (2002) was used to construct RF models. Library randomForest also provides information on variable 254 

importance, which is determined by how much prediction error increases when testing data for that variable is permuted 255 

while all others are left unchanged (Liaw and Wiener, 2002). 256 

 257 

Ensemble predictions were generated by taking the arithmetic mean of the predictions from the NB GLM, Hurdle GLM, 258 

and RF models (the so-called "committee averaging" method, Araújo and New, 2007; Das et al., 2008). A recent 259 

comparative analysis performed by Marmion et al. (2009) indicated that other measures of calculating consensus (e.g., 260 

the use of median values) performed about the same or worse, which is consistent with the general findings reported in 261 

the ensemble forecasting literature (Clemen, 1989). 262 

 263 

 264 

2.6. Model evaluation 265 

 266 

Ten sets of randomly chosen training and testing data (90% and 10% of original data, respectively) were used to 267 

iteratively construct and test the predictions from NB, Hurdle, and RF models. Prediction error was assessed using root 268 

mean square error (RMSE): 269 
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 272 

 273 

2.7. Assessment of potential seabird vulnerability 274 

 275 

The predictions from each of the species distribution models were combined into a single, seasonally-specific 276 

vulnerability map. Potential vulnerability (V) was quantified for each location in the prediction surface as the sum of the 277 

relative importances (R) for each of the k species: 278 

 279 





k

i
iRV

1

            (2) 280 

 281 

Relative importance was derived from quintile classification of the SDM abundance predictions, but with the break 282 

points determined using data pooled across all seasons. Adopting this approach ensured that seasonal shifts in seabird 283 

community usage patterns could be readily visualized and detected. It should be noted that while specific hazards were 284 

not introduced into equation 2 (e.g., offshore wind farms), they could easily be incorporated by applying species-285 

specific weighting to reflect differing species sensitivity. Furthermore, when regional maps of the distribution and 286 

intensity of particular hazards are available, the vulnerability score could be multiplied by the hazard risk to produce a 287 

composite risk map. 288 

 289 

3. Results 290 

 291 

3.1. Species observations 292 

 293 

Distance-sampling methods allowed for the estimation of seabird densities, by species group and season, at the level of 294 

10 x 10  survey blocks. Preliminary inspection of the resulting density distributions suggest significant offshore 295 

aggregations of Black-legged Kittiwake in the winter and spring seasons (Figure 2a), concentrations of Dovekie on the 296 

shelf and shelf break during the winter-spring period (Figure 2b), significant near-shore abundances in murres (Figure 297 

2c) and Northern Gannet (Figure 2d) during the spring season, and noteworthy aggregations of storm-petrels  (Figure 298 

2e) and shearwaters (Figure 2f) throughout the region during the summer (see also Fifield et al., 2009). Storm-petrels 299 

are entirely absent from the study area during winter. 300 
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 301 

 302 

3.2. Model construction and evaluation 303 

 304 

Species distribution models were constructed, for each species, using NB, Hurdle, and RF algorithms. In the case of NB 305 

and Hurdle models, an all-combinations approach was applied and standardized coefficients obtained using AIC-306 

weighted model averaging (see Section 2.5). This process was repeated for 10 sets of training-testing data in order to 307 

generate 95% confidence intervals around the model-averaged coefficients obtained using the complete data set. 308 

Physical variables were then sorted from largest amplitude, negative-value to largest amplitude, positive-value 309 

coefficients, for both the NB and Hurdle algorithms (Figures 3 and 4, respectively). For RF models, variable importance 310 

was assessed using the importance values generated by the randomForest software (Figure 5). 311 

 312 

Season was a key covariate for all species, regardless of modelling algorithm, though it varied in importance. Relative 313 

to fall occurrences, Black-legged Kittiwake, Dovekie, and murres showed strong winter responses under NB models 314 

(Figure 3). The same was true for Hurdle models (Figure 4), though uncertainty in the coefficients for the count-315 

component tended to be higher. Storm-petrels and shearwaters showed strong summer responses under NB and Hurdle 316 

models, while densities of the Northern Gannet peaked in the fall. Depth (DEPTH) and distance to shelf break 317 

(SHELFDIST) were influential for some species, e.g., Black-legged Kittiwake, Dovekie, and Northern Gannet. DEPTH 318 

and season tended to be the most influential covariates in RF models (Figure 5), with SHELFDIST most important for 319 

Northern Gannet. Variation in seadepth (DEPTH_CV) also played an important role in storm-petrel and shearwater RF 320 

models.  321 

 322 

No one algorithm (NB, Hurdle, RF) exhibited consistently superior performance over all species and iterations, but 323 

occasionally, NB and Hurdle algorithms failed to compute (Figure 6). RF models appeared better able to cope with 324 

sparse data and, in some cases, to also generate lower prediction error (e.g., Northern Gannet, Figure 6). More often, 325 

however, variation in performance meant that methods alternated in predictive power, working better in some iterations 326 

than others. Simple averaging of the NB, Hurdle and RF results produced ensemble predictions that either tracked the 327 

consensus or constituted a compromise value. 328 

 329 

 330 

3.3. Assessment of species vulnerability 331 

 332 

Vulnerability maps (Figure 7) represented the influence of season and bathymetric factors on the relative distribution of 333 

all species combined. Potential vulnerability for this group of species were highest in the spring, when large numbers of 334 
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seabirds were widely distributed throughout the Nova Scotian shelf and shelf break. This contrasts with the fall season, 335 

when vulnerability was distributed along a narrower front concentrated primarily over the shelf break. There was a near-336 

shore shift in vulnerability in the summer, presumably reflecting the central place foraging limitations imposed on 337 

species such as the Northern Gannet. But it is important to note that this was counteracted by the presence of large 338 

numbers of non-breeding species such as shearwaters, which would not be similarly range restricted. Potential 339 

vulnerability was lowest during the winter season (Figures 7 and 8) when patchier distributions combined with the 340 

absence of storm-petrels, for example, lowered the vulnerability scores. 341 

 342 

4. Discussion 343 

 344 

Conservation planning is a spatially-explicit exercise (Magness et al., 2011). The effective management of human 345 

activity in marine environments, e.g., through the designation of marine protected areas (MPAs), requires a synthesis of 346 

all available information (Araujo and New, 2007; Ronconi et al., 2012), and SDMs offer a powerful way to combine 347 

biological surveys with environmental information to better understand habitat usage through space and time. This 348 

study demonstrates an efficient framework for integrating multiple species data from an ongoing monitoring program 349 

across several implementation steps: GIS-based data management, state-of-the-art modelling, and production of a key 350 

spatial planning product. Each aspect of this framework will be discussed in turn. 351 

 352 

Through a regular, grid-based approach ("Eulerian" data, see Tremblay et al., 2000) data gathered through opportunistic 353 

surveys was aggregated at 10 x 10 survey blocks to allow accurate density estimation. Factors which impact seabird 354 

detection, e.g., sea condition, or whether a bird was in the air or on the water, were statistically accounted for as 355 

covariates using distance sampling (Buckland et al., 2001; Marques et al., 2007). While unable to account for all the 356 

variability in distribution, season, sea depth and distance to shelf breaks were important and influential predictors. 357 

Proximity to the shelf break, for instance, stood out as an important factor influencing Black-legged Kittiwake numbers, 358 

while seafloor 'ruggedness' (DEPTH_CV) was associated with shearwaters and Northern Gannet. Adopting an 359 

aggregated, grid-based framework meant that seabird counts had to be pooled over the entire study period, but as fine-360 

scale marine processes were not available contemporaneous for the entire study area, this was a sensible approach that 361 

permitted a focus on stable marine features (e.g., bathymetry). This approach did allow for seasonal summaries of 362 

abundance, which was important given that season was influential regardless of modelling method. 363 

 364 

Despite an extensive history in other disciplines (e.g., macroeconomics and psychology, see Clemen, 1989), ensemble 365 

prediction/forecasting has only recently been applied in SDM (Oppel et al., 2012; Araujo and New, 2007). The focus of 366 

most SDM papers published in the first decade of the 21st century focused on comparing relative performance (e.g., 367 

Elith et al., 2006). As a consequence, the SDM literature is replete with an enormous array of single-method modelling 368 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

   Page 12 
  

approaches where no attempt is made to gather the "consensus opinion" presented by a diversity of algorithms. While 369 

individual methods might be well calibrated and offer high predictive accuracy for the data at hand, there is no way to 370 

assess how realistic the predictions will be in unsampled locations, or under changing environmental conditions 371 

(Marmion et al., 2009). Jones-Farrand et al. (2011) argue that basing conservation decisions on the basis of predictions 372 

from a single model is "risky", in that problems are formulated under a specific set of objectives, constraints and 373 

assumptions that may not apply more generally. Ensemble approaches have an excellent track record for producing 374 

robust predictions, helping to reduce uncertainty and, in the process, increasing confidence in the decisions derived from 375 

them. In this study, no single algorithm (NB, Hurdle, RF) exhibited consistently superior performance over all species 376 

and iterations, though occasionally, NB and Hurdle algorithms failed altogether. RF models appeared better able to cope 377 

with sparse data and, in some cases, to also generate lower prediction error (e.g., Northern Gannet, Figure 6). In general, 378 

variation in performance mean that methods alternated in predictive power, working better in some iterations than 379 

others. Simple averaging of the NB, Hurdle and RF results produced ensemble predictions that either tracked the 380 

consensus or constituted a compromise value. 381 

 382 

Deriving inferences from model predictions requires useful spatial products. In this study, predicted abundance based on 383 

the ensemble model was used to define the relative importance of n = 1243 locations in the study area for each species 384 

independently. Quintile classes were assigned, based on the entire range of predicted abundances across all seasons, in 385 

order to rank the relative usage of each of these locations. Potential vulnerability to anthropogenic disturbance was then 386 

assessed as a function of the sum of the relative usage across species, enabling the visualization of changing patterns of 387 

usage across the entire community. The composite picture that emerges is one of shifting presence, with some species 388 

disappearing from the region (e.g., petrels and shearwaters in winter) and others increasing at the same time (e.g., 389 

Black-legged Kittiwake). Spring (March - April) stood out as a period of peak usage by the entire community, which 390 

corresponded with a wide geographic distribution throughout the shelf and shelf break. As this is an area exposed to 391 

extensive shipping traffic and ongoing petroleum extraction and exploration, there remains an ongoing potential impact 392 

by acute (e.g., accidental) and chronic (e.g., illegal) discharges of oil pollution. A previous study indicated that near-393 

shore areas, particularly in the vicinity of harbours, tend to suffer the highest pollution loading but elevated levels also 394 

occurred within and beyond the shelf break (Lieske et al., 2011). 395 

 396 

The value of at-sea surveys are clear when one considers how difficult it can be to assess the potential vulnerability of 397 

seabirds outside the breeding season, when species are widely distributed throughout remote locations (Votier et al., 398 

2005) and others may be present as transient non-breeders. Future work should pursue greater integration of models 399 

from different data sets, which would allow broad and fine-scale patterns to be explored and important patterns to be 400 

detected. For instance, combining telemetry tracking information with broad-scale distributional information would 401 

allow for analysis of seabird activity at multiple scales, widening the range of hypotheses that could be tested. 402 
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Furthermore, seabird research programs would greatly benefit from the coordinated acquisition of marine hazard data 403 

(e.g., fishing activity, oil discharges) at regional scales, which would support geographic analysis of the potential impact 404 

of specific risks. 405 

 406 

 407 
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 420 

Figures 421 

 422 

Figure 1. Coastline (dark grey shading), bathymetry (indicated by 100m isobath lines), and the location of key seabanks 423 
(100m depth, light grey shading) within the Canadian Maritimes. 424 
 425 
Figure 2a. Density of Black-legged Kittiwake (per km2) for 10 x 10 survey blocks, for spring (a, Mar - Apr), 426 
summer (b, May - Aug), fall (c, Sep - Oct), and winter (d, Nov - Feb).  427 
 428 
Figure 2b. Density of Dovekie (per km2) for 10 x 10 survey blocks, for spring (a, Mar - Apr), summer (b, May 429 
- Aug), fall (c, Sep - Oct), and winter (d, Nov - Feb).  430 
 431 
Figure 2c. Density of murres (per km2) for 10 x 10 survey blocks, for spring (a, Mar - Apr), summer (b, May - 432 
Aug), fall (c, Sep - Oct), and winter (d, Nov - Feb 433 
 434 
Figure 2d. Density of Northern Gannet (per km2) for 10 x 10 survey blocks, for spring (a, Mar - Apr), summer 435 
(b, May - Aug), fall (c, Sep - Oct), and winter (d, Nov - Feb 436 
 437 
Figure 2e. Density of storm-petrels (per km2) for 10 x 10 survey blocks, for spring (a, Mar - Apr), summer (b, 438 
May - Aug), fall (c, Sep - Oct), and winter (d, Nov - Feb).  439 
 440 
Figure 2f. Density of shearwaters (per km2) for 10 x 10 survey blocks, for spring (a, Mar - Apr), summer (b, 441 
May - Aug), fall (c, Sep - Oct), and winter (d, Nov - Feb 442 
 443 
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Figure 3. Variable importance for species distribution models developed using the negative binomial (NB) 444 
generalized linear model as indicated by regression coefficients for standardized covariates. Also shown are 445 
the estimated confidence intervals (95%) derived from testing and training data. 446 
 447 
Figure 4. Variable importance for species distribution models developed using the hurdle model, as indicated 448 
by the regression coefficients for standardized covariates. Results are presented for both the presence 449 
component (a, binomial distribution) and the count component (b, negative binomial distribution). Also 450 
shown are the estimated confidence intervals (95%) derived from testing and training data. 451 
 452 
Figure 5. Variable importance for species distribution models developed using random forest machine 453 
learning. "Importance" was assessed as the percentage change in prediction error when each variable is 454 
permuted out of the set of covariates used by the algorithm classifier. 455 
 456 

Figure 6. Variation in prediction error, as measured by root mean squared error (RMSE), across 10 iterations 457 
of randomly selected training and testing data modelled using: negative binomial (NB) glm, Hurdle, Random 458 
Forest (RF), and ensemble. 459 
 460 

Figure 7. Seasonally-specific potential vulnerability maps, based on the sum of the relative densities derived 461 
from ensemble model predictions for each of six species (Black-legged Kittiwake, Dovekie, murres, Northern 462 
Gannet, storm-petrels, and shearwaters). Seasons were defined as: spring (Mar - Apr), summer (May - Aug), 463 
fall (Sep - Oct), and winter (Nov - Feb). 464 
 465 

Figure 8. Density distribution of the cell-specific vulnerability scores derived from the seasonally-specific 466 
vulnerability maps (Figure 7).  467 
 468 
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Table 1. Summary of the results of studies with the expressed goal of associating seabird distribution with oceanographic and biological 

factors. 

Species Scale Period Location 

Oceanographic & 

Biological Factors 
1 

Source Model? 
Storm Petrels 

(Hydrobatidae) 

~ 3.7-km x 0.40-km 1980, 1985, 

1986 

Scotian 

shelf, Cabot 

strait 

Shelf break (shelf slope), sea 

banks (e.g., Georges Bank) 

Brown (1988a) No 

       

Pelagic birds Mega: >3000 km 

 

Macro:1000-3000 

km 

 

Meso: 100-1000 km 

 

Coarse: 1-100 km 

 

Fine: 1-100 m 

1987 Global Mega: major current systems 

and water masses; margins of 

oceans 

 

Macro: gyres, zonal bands, 

fronts 

 

Meso: rings, eddies, jets, 

broad upwelling events, 

freshwater plumes, fronts 

 

Coarse: island wakes, ice 

edge, sea mounts, shelf edges 

 

Fine: wind streaks 

Hunt & 

Schneider 

(1987) 

No 

(review) 

 
 

     

Marbled Murrelet 

(Brachyramphos 

marmoratus) 

10 km shore lengths Densities: 

1972-1993 

 

Counts: 1922-

1989 

British 

Columbia, 

Canada 

Average sea-surface 

temperature (SST), Apr. to 

Aug.; herring spawn index; 

estuary locations; distribution 

of sand and fine gravel 

substrate; proximity to 

glaciers 

Yen et al. 

(2004a) 

Yes 

(Poisson 

GLM
2
, 

CART
3
, 

Tree
4
, 

MARS
5
 

ANN
6
) 

Tables



       

Cassin’s Auklet 

(Ptychoramphus 

aleuticus); 

Common Murre (Uria 

aalge); 

Sooty Shearwater 

(Puffinus griseus); 

Phalaropes (Phalaropus 

spp.) 

~ 1 km
2 

1996-1997, 

2001-2002 

California Median depth; contour index 

(benthic “roughness”); 

distance to continental shelf 

break (200-m isobath); 

distance to banks, canyons 

and/or archipelago 

Yen et al. 

(2004b) 

Yes 

(ordinal 

logistic 

regression) 

       

Western Gulls (Larus 

occidentalis); 

Common Guillemot (Uria 

aalge); 

Waves Albatrosses 

(Phoebastria irrorata) 

15-min. survey time 

period x strip width 

of 300-600 m 

1985-1994, 

continuously 

for gulls and 

guillemots; 

discontinuously 

for albatrosses 

Farallon Is., 

California; 

Galapagos 

Latitude; longitude; distance 

to mainland; distance to 

breeding colony; depth 

(model selection results not 

provided) 

Clarke et al. 

(2003) 

Yes 

(GAM
7
) 

       

Guillemots (Uria spp.) 20 km x 20 km grid 1986-1994 Barents Sea, 

Norway 

Sea-surface temperature 

(SST); Sea-surface salinity 

(SSS); variance in SST; 

variance in SSS 

Fauchald et al. 

(2002) 

Yes (linear 

regression) 

       

Northern Gannets (Morus 

bassanus); 

Large gulls; 

Auks; 

Kittiwakes 

10 km x 10 km grid 2001-2002 Bay of 

Biscay, 

France 

Latitude and longitude Certain et al. 

(2007) 

Yes (Two-

stage 

modelling: 

GAM
7
 + 

kriging of 

residuals) 

       

Northern Gannets; Black-

legged Kittiwake (Rissa 

tridactyla); Northern 

Fulmar (Fulmaris 

1
0
 x 1

0
 grid 1966-1992 Atlantic 

Canada 

Sea surface temperature 

(SST); sea surface salinity 

(SSS); water temperature at 

30m depth; salinity at 30m 

Huettmann and 

Diamond (2001) 

Yes (Two-

stage 

modelling: 

logistic 



glacialis); Atlantic Puffin 

(Fratercula arctica); 

Thick-billed Murre (Uria 

lomvia); Common Murre 

depth; air pressure at sea 

level (asl); standard deviation 

(STD) of atmospheric 

pressure; windspeed; 

difference between air and 

sea temperature; distance to 

coastline; shelf aspect; shelf 

edge; sea mount; sea depth; 

slope; STD of seafloor; 

aspect of sea floor 

GLM + 

CART
3
) 

       

Black-footed Albatross 

(Phoebastria nigripes); 

Northern Fulmar; Sooty 

Shearwater; Fork-tailed 

Storm-Petrel 

(Oceanodroma furcata); 

Leach’s Storm Petrel (O. 

leucorhoa); phalaropes; 

Heermann’s Gull (Larus 

heermannii); California 

Gull (L. californicus); 

Glaucous-Winged Gull; 

Sabines’ Gull (L. sabini); 

Black-legged Kittiwakes; 

Arctic Tern; Common 

Murre; Cassin’s Auklet 

(Ptychoramphus 

aleuticus); Rhinoceros 

Auklet (Cerorhinca 

monocerata); Tufted 

Puffin (Fratercula 

cirrhata) 

4 km x 4 km grid 1996-2004 Southeastern 

Gulf of 

Alaska 

SST (from AVHRR sensor); 

SST gradient (using edge 

detection algorithm of 

Etnoyer et al. 2004); 

Chlorophyll a (from 

SeaWiFS sensor) 

O’Hara et al. 

(2006) 

Yes 

(logistic 

GLM) 

       



Cory’s Shearwater 

(Calonectris diomedea) 

Continuous 

sampling along 

transect (sampled in 

15 minute 

increments) 

1983 South 

Atlantic 

Bight off 

northeast 

Florida and 

southeast 

Georgia 

Distance from Gulf Stream 

front; change in SST; change 

in fluorescence 

Haney and 

McGillivray 

(1985) 

Yes 

(Pearson’s 

r) 

       

Thick-billed Murre 50 m, 100 m, 250 m, 

500 m, 1000 m and 

2000 m transect 

segments 

1982-1983 Nuvuk Is., 

Hudson Bay 

Depth; depth gradient 

(maxdepth – mindepth); 

depth x depth gradient 

(interaction); nekton density 

(via acoustic sampling) 

Cairns and 

Schneider 

(1990) 

Yes 

(Pearson`s 

r) 

       

Dovekie (Alle alle) Continuous 

sampling along 

transect (sampled in 

10 minute 

increments) 

1969-1983 Atlantic 

Canada 

Distance to shelf break Brown (1988b) Yes (Chi-

square) 

       

Red-tailed Tropicbird 

(Phaethon rubricauda); 

White-tailed Tropicbird 

(P. lepturus); Red-billed 

Tropicbird (P. aethereus) 

2
0 
x 2

0
 grid  1980-1995 Pacific 

Ocean 

Latitude; longitude; shortest 

distance to mainland; ocean 

depth; distance to primary 

breeding colony 

Spear and 

Ainley (2005) 

Yes 

(GAM
7
) 

       

Manx shearwater 

(Puffinus puffinus); 

Guillemot; Razorbill 

(Alca torda); Kittiwake; 

Fulmar 

~ 2 km resolution 

(transect sampled in 

10-minute intervals) 

1990 Irish Sea SST; change in SST; SSS Durazo et al. 

(1998) 

Yes 

(Kruskal-

Wallis 

ANOVA) 

       

Northern Gannet 1 km x 1 km grid 2003 Western 

North Sea 

Distance to colony; coastal 

water mass; front 

Skov et al. 

(2008) 

Yes 

(ENFA
8
) 



       

Northern Fulmar, Dovekie Continuous 

sampling along 6-

km length transects 

1986-1990 Skagerrak, 

North Sea 

Shelf break front Skov and 

Durinck (1998) 

Yes 

(ANOVA) 

       

Balearic Shearwater 4 km x 4 km 2004-2009 Southwest 

Iberia 

Distance to coast; mean 

depth; depth gradient; SST; 

Chl-a; sea surface height 

(SSH); density of ocean 

fronts; mean distance to 

nearest ocean front; 3-month 

SST, Chl-a, SSH; change in 

SST; change in Chl-a 

Oppel et al. 

(2012) 

Yes 

(GLM, 

GAM, 

BRT
9
, 

Maxent, 

random 

forest, 

ensemble) 

       

Northern Fulmar 3 km x 3 km grid 1975-2009 Bering Sea 

and Aleutian 

Islands 

Depth; slope; bathymetric 

features (e.g., plains, ridges); 

distance to land; colony 

effect; SST; primary 

productivity; fish catch 

Renner et al. 

(2013) 

Yes 

(GLMM, 

GAM, 

MARS, 

random 

forest, 

ensemble) 

       

Black-legged Kittiwake 1 km x 1 km grid 2009-2010 Lambay and 

Raithlin Is., 

Republic of 

Ireland 

Distance to colony; distance 

to land; depth; slope; Chl-a; 

SST; July fronts 

Chivers et al. 

(2013) 

Yes 

(Maxent) 

       

 
1
 Factors which were either implicated by qualitative association, or were selected as significant predictors through formal model selection 

procedures. 
2
 GLM = Generalized Linear Model. 

3
 CART = Classification and Regression Tree. 

4
 Tree (SPLUS). 

5
 MARS = Multivariate and Adaptive Regression Splines. 



6
 ANN = Artificial Neural Network. 

7
 GAM = Generalized Additive Model. 

8
 ENFA = Ecological Niche Factor Analysis. 

9 
BRT = Boosted Regression Tree.



 

 

 

Table 2. Environmental variables used to construct seabird species distribution models. 

 
Abbreviation Variable

 
Unit Data Provider Website Address 

DEPTH Mean seadepth m National Geophysical 

Data Center (NOAA) 

http://www.ngdc.noa

a.gov/mgg/global/eto

po2.html 

DEPTH_CV Coefficient of 

variation in 

seadepth 

Standard- 

ized 

variation 

GIS-derived product 

of DEPTH data 

NA 

PBANK Percentage of 

area with 

seabank 

% GIS-derived from 

100 m seadepth 

contours 

NA 

SEASON Categorical 

variable 

(fall,spring, 

summer,winter) 

dummy 

indicator 

variable 

NA NA 

SHELFDIST Mean distance 

to shelfbreak 

m GIS-derived product NA 

 


